
vulnerabilities die hard

kowsik@musecurity.com
http://labs.musecurity.com

i see dead protocols

this talk …

 is not about mu
 is not about [just] fuzzing
 does not contain pictures from matrix

… is about

 protocols
 in the pedantic sense

 abstractions and patterns
 string theory and unification
 laziness, impatience and hubris

what’s a protocol anyways?

 rules governing the syntax, semantics, and
synchronization of communication
 wiki: Protocol (computing)

 protocol != network
 protocols represent the attack surface

 you are who your interface is
 only way into the code

 that really matters from the outside

taxonomy

 network-based (layers 2 through 7)
 command line interfaces

 psql, argc/argv
 function calls

 Java, IDispatch#invoke, ioctl
 file formats

kevin bacon

rfc’s

re
fe

re
nc

es

six degrees of protocols

 SIP uses LDAP DN’s
 which use ASN

 which are in X.509 certificates
 which is used in TLS/SSL

 which contains Name/Value pairs
 that’s used in iCal format

 DHCP has NetBIOS names
 which is used in CIFS

 which uses Kerberos
 which uses ASN

 which …

dom’s and channel’s

 state, structure, semantics and constraints
 a semantic DOM
 with associated vulnerability patterns

 io/delivery mechanism
 sockets (raw, v4, v6, tcp, udp, ssl, sctp, …)
 interactive channels (telnet, ssh, console, …)
 bluetooth, wireless, usb, firewire
 ioctl’s
 files

fuzzing

 is really about semantic data structures
 free form deformation
 dependency propagation
 constraint violation

string is a string is a …

peeling the onion

method

{

encoding

{
message

channel

peeling the onion

{{
serial > dnp::write > write_register()
udp > sip::invite > incoming_call()
telnet > set in “trust” … > set_interface()
http > soap::xml > AddShoppingCart()
file > qt:moov > play_movie()

50 ways to encode your lover

 def add_csw_speakers(emails)
 def add_csw_speakers (emails):
 int add_csw_speakers(const char **emails)
 public void add_csw_speakers(String[] emails)

command line interface

csw> add speakers “foo@bar.com” “a@b.com"

xdr/rpc

07 e2 5d 7b 00 00 00 00 00 00 00 02 00 01 86 a0 ..]{............

00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 0b

66 6f 6f 40 62 61 72 2e 63 6f 6d dd 00 00 00 07 foo@bar.com.....

61 40 62 2e 63 6f 6d dd a@b.com.

asn.1 (ber)

30 16 04 0b 66 6f 6f 40 62 61 72 2e 63 6f 6d 04 0...foo@bar.com.

07 61 40 62 2e 63 6f 6d .a@b.com

soap/xml

<s:Envelope xmlns:s=“http://schemas.xml.soap.org”>

 <s:Body>

 <csw:AddSpeakers xmlns:csw=“http://www.cansecwest.com”>

 <csw:speaker>foo@bar.com</csw:speaker>

 <csw:speaker>a@b.com</csw:speaker>

 </csw:AddSpeakers>

 </s:Body>

</s:Envelope>

write once, 0-days everywhere

 problems at multiple levels
 inside the method
 with the encoding
 with the message
 with the protocol
 with the channel

 YMMV with 0x41’s
 depends on which layer of the onion
 validity of one layer is a prerequisite for the next

m-theory

symmetry breaking

field

sample

field

sample

generator parser

m-theory

specificationgrammar

sample

field

compiler manual

outputparser inferenceinput

definition: field

 core abstraction
 exists outside of specific channels

 nested to arbitrary levels
 structural/semantic relationships
 primary methods

 input
 output
 alternates

 static and dynamic
 semantics and context-aware
 domain-specific
 fuzzing is one kind of attack vector!

fields

 uint8, uint16, flags32, enum24, …
 length, checksum, crc
 name-value, dsv, c-string, tlv
 http-header, http-content-length-header
 sip-request, sip-via-header
 qt-moov-atom, png-ihdr-chunk

super symmetry and equivalence

f1

cafebabe

f2

cafebabeassert ==

output input output

laws of fields

 fields shall be channel agnostic

 that which is sent has potential for alternates
 requests in client mode
 responses in server mode

 that which is received is canonicalized
 etag’s, challenge-handshake, cookies
 via headers, route tables

input bounds

ascii.line {
encode.base64 {

ascii.dsv :delimiter => ‘:’ {
string.basic :value => ‘hello’
string.basic :value => ‘world’

}
}

}

generates and parses “aGVsbG86d29ybGQ=\r\n"

action at a distance

struct {
foo = ascii.line {

ascii.dsv(:delimiter => ‘ ‘) {
ascii.c_string :value => ‘hello world’

}
}
ascii.length :of => foo

}

fieldomatic complexity

 fields interact and relate to each other
 output of one drives the other
 form an acyclic graph

 use for dynamic alternates
 length, offsets
 ordering, prerequisites and constraints

 dependencies
 structure, semantics and state

 #inbound-edges == cyclomatic complexity

laziness

specificationgrammar

sample

field

compiler manual

outputparser inferenceinput

 specifications to fields take time
 very manual

 extension-space is unbounded
 not a static problem

 constraints and semantics not always obvious
 being an rfc bigot doesn’t do you any good

parser

specification

parser

fieldsample
parser

quicktime parser (snippet)

 def parse_atom_elst
 type.uint8 'version'
 type.flags24 'flags'
 nentries = type.count32('num-entries')
 group('entries') { |g|
 nentries.of = g
 nentries.value.times do |i|
 group("entry-#{i}") {
 type.uint32 'track-duration'
 type.time32 'media-time'
 type.uint32 'media-rate'
 }
 end
 }
end

impatience

specificationgrammar

sample

field

compiler manual

outputparser inferenceinput

inference

 similar to edge detection
 extract fields and relationships

 structural and semantic inference
 results in a semantic dom
 field’s input method guides inference

hubris

specificationgrammar

sample

field

compiler manual

outputinference parserinput

compiler

 machine parsable grammars
 ASN: asn1c
 XDR: rpcgen
 IDL: midl (pymsrpc)
 …

 remember: a string is a string is a …
 what’s missing?

 transactions, scenarios and state
 and yeah, encoding and transport

compiler

field

samples

compiler
grammar

defaults

summary

 protocols do unify in the 11th dimension
 semantic dom is all there to it
 there’s no such thing as a CLI fuzzer

 it’s just a different channel
 laziness, hubris and impatience

 not just for perl programmers
 don’t write fuzzers

 build a semantic dom instead
 fuzzing “just” happens

questions?

kowsik@musecurity.com
http://labs.musecurity.com

